RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III.

نویسندگان

  • Z Hostomsky
  • G O Hudson
  • S Rahmati
  • Z Hostomska
چکیده

RNase D was recently reported as a new enzymatic activity associated with HIV-1 reverse transcriptase (RT), cleaving RNA at two positions within the double-stranded region of the tRNA primer-viral RNA template complex (Ben-Artzi et al., Proc. Natl. Acad. Sci. USA 89 (1992) 927-931). This would make RNase D a fourth distinct activity of HIV-1 RT, in addition to RNA- and DNA-dependent DNA polymerase and RNase H. Using a specific substrate containing tRNA(Lys,3) hybridized to the primer binding site, we were able to detect the reported RNase D activity in our preparations of recombinant HIV-1 RT. This activity was also present in several active-site mutants of RT, suggesting that it is independent of the RNase H and polymerase functionalities of RT. Furthermore, we found that the cleavage specificity of RNase D is the same as that of RNase III isolated from E.coli. A likely explantation of these results--that the observed RNase D activity is attributable to traces of RNase III contamination--was further strengthened by the finding that the recombinant preparations of HIV-1 RT can specifically cleave a phage T7-derived double-stranded RNA processing signal, which has been used as a model substrate for detection of E.coli RNase III. Moreover, RT purified from an RNase III- strain of E.coli displayed no cleavage of the tRNA primer-RNA template complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.

Early events in the retroviral replication cycle include the conversion of viral genomic RNA into linear double-stranded DNA. This process is mediated by the reverse transcriptase (RT), a multifunctional enzyme that possesses RNA-dependent DNA polymerase, DNA-dependent DNA polymerase, and RNase H activities. In the course of studies of a recombinant RT of human immunodeficiency virus type 1 (HI...

متن کامل

Intrinsic properties of reverse transcriptase in reverse transcription. Associated RNase H is essentially regarded as an endonuclease.

The intrinsic properties of reverse transcriptase in reverse transcription were studied using a synthetic, partial ovalbumin mRNA with a synthetic DNA oligonucleotide annealed to the 3'-end of the RNA as a model substrate. With or without concomitant cDNA synthesis, the RNase H activity of avian myeloblastosis virus (AMV)-reverse transcriptase cleaved the substrate at a site which would leave a...

متن کامل

Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H.

In the presence of Mn2+, reverse transcriptase of both human immunodeficiency virus and murine leukemia virus hydrolyzes duplex RNA. However, designating this novel activity RNase D conflicts with Escherichia coli RNase D, which participates in tRNA processing. On the basis of its location in the RNase H domain, we propose that this novel retroviral activity be redesignated RNase H*.

متن کامل

The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity.

Retroviral RNases H are similar in sequence and structure to Escherichia coli RNase HI and yet have differences in substrate specificities, metal ion requirements, and specific activities. Separation of reverse transcriptase (RT) into polymerase and RNase H domains yields an active RNase H from murine leukemia virus (MuLV) but an inactive human immunodeficiency virus (HIV) RNase H. The "handle ...

متن کامل

Expression of an Mg2+-dependent HIV-1 RNase H construct for drug screening.

A single polypeptide of the HIV-1 reverse transcriptase that reconstituted Mg(2+)-dependent RNase H activity has been made. Using molecular modeling, the construct was designed to encode the p51 subunit joined by a linker to the thumb (T), connection (C), and RNase H (R) domains of p66. This p51-G-TCR construct was purified from the soluble fraction of an Escherichia coli strain, MIC2067(DE3), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 20 21  شماره 

صفحات  -

تاریخ انتشار 1992